The following topics will be covered in this section:
- Introduction
- Homogenization Mechanism
- turbulence
- cavitation
- Effect Of Homogenization
- fat globule properties
- surface layers
Introduction
Milk is an oil-in-water emulsion, with the fat globules dispersed in a continuous skimmilk phase. If raw milk were left to stand, however, the fat would rise and form a cream layer. Homogenization is a mechanical treatment of the fat globules in milk brought about by passing milk under high pressure through a tiny orifice, which results in a decrease in the average diameter and an increase in number and surface area, of the fat globules. The net result, from a practical view, is a much reduced tendency for creaming of fat globules. Three factors contribute to this enhanced stability of homogenized milk: a decrease in the mean diameter of the fat globules (a factor in Stokes Law), a decrease in the size distribution of the fat globules (causing the speed of rise to be similar for the majority of globules such that they don't tend to cluster during creaming), and an increase in density of the globules (bringing them closer to the continuous phase) oweing to the adsorption of a protein membrane. In addition, heat pasteurization breaks down the cryo-globulin complex, which tends to cluster fat globules causing them to rise.Homogenization Mechanism
Auguste Gaulin's patent in 1899 consisted of a 3 piston pump in which product was forced through one or more hair like tubes under pressure. It was discovered that the size of fat globules produced were 500 to 600 times smaller than tubes. There have been over 100 patents since, all designed to produce smaller average particle size with expenditure of as little energy as possible. The homogenizer consists of a 3 cylinder positive piston pump (operates similar to car engine) and homogenizing valve. The pump is turned by electric motor through connecting rods and crankshaft. To understand the mechanism, consider a conventional homogenizing valve processing an emulsion such as milk at a flow rate of 20,000 l/hr. at 14 MPa (2100 psig). As it first enters the valve, liquid velocity is about 4 to 6 m/s. It then moves into the gap between the valve and the valve seat and its velocity is increased to 120 meter/sec in about 0.2 millisec. The liquid then moves across the face of the valve seat (the land) and exits in about 50 microsec. The homogenization phenomena is completed before the fluid leaves the area between the valve and the seat, and therefore emulsification is initiated and completed in less than 50 microsec. The whole process occurs between 2 pieces of steel in a steel valve assembly. The product may then pass through a second stage valve similar to the first stage. While most of the fat globule reduction takes place in the first stage, there is a tendency for clumping or clustering of the reduced fat globules. The second stage valve permits the separation of those clusters into individual fat globules.Homogenizer and Valve 17 KB
It is most likely that a combination of two theories, turbulence and cavitation, explains the reduction in size of the fat globules during the homogenization process.
- Turbulence
- Energy, dissipating in the liquid going through the homogenizer valve, generates intense turbulent eddies of the same size as the average globule diameter. Globules are thus torn apart by these eddie currents reducing their average size.
- Cavitation
- Considerable pressure drop with charge of velocity of fluid. Liquid cavitates because its vapor pressure is attained. Cavitation generates further eddies that would produce disruption of the fat globules. The high velocity gives liquid a high kinetic energy which is disrupted in a very short period of time. Increased pressure increases velocity. Dissipation of this energy leads to a high energy density (energy per volume and time). Resulting diameter is a function of energy density.
- type of valve
- pressure
- single or two-stage
- fat content
- surfactant type and content
- viscosity
- temperature
Effect of Homogenization:
- Fat globule
No Homogenization 15 MPa (2500 psig) Av. diam. (µ m) 3.3 0.4 Max. diam. (µ m) 10 2 Surf. area (m2/ml of milk) 0.08 0.75 Number of globules (µ m-3) 0.02 12
- Surface layer